Structure and mechanism of action of Sda, an inhibitor of the histidine kinases that regulate initiation of sporulation in Bacillus subtilis.
نویسندگان
چکیده
Histidine kinases are used extensively in prokaryotes to monitor and respond to changes in cellular and environmental conditions. In Bacillus subtilis, sporulation-specific gene expression is controlled by a histidine kinase phosphorelay that culminates in phosphorylation of the Spo0A transcription factor. Sda provides a developmental checkpoint by inhibiting this phosphorelay in response to DNA damage and replication defects. We show that Sda acts at the first step in the relay by inhibiting autophosphorylation of the histidine kinase KinA. The structure of Sda, which we determined using NMR, comprises a helical hairpin. A cluster of conserved residues on one face of the hairpin mediates an interaction between Sda and the KinA dimerization/phosphotransfer domain. This interaction stabilizes the KinA dimer, and the two proteins form a stable heterotetramer. The data indicate that Sda forms a molecular barricade that inhibits productive interaction between the catalytic and phosphotransfer domains of KinA.
منابع مشابه
Replication Initiation Proteins Regulate a Developmental Checkpoint in Bacillus subtilis
We identified a signaling pathway that prevents initiation of sporulation in Bacillus subtilis when replication initiation is impaired. We isolated mutations that allow a replication initiation mutant (dnaA) to sporulate. These mutations affect a small open reading frame, sda, that was overexpressed in replication initiation mutants and appears to be directly regulated by DnaA. Mutations in rep...
متن کاملStructure of the sporulation histidine kinase inhibitor Sda from Bacillus subtilis and insights into its solution state.
The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB. The structure contain...
متن کاملImpact of Serine/Threonine Protein Kinases on the Regulation of Sporulation in Bacillus subtilis
Bacteria possess many kinases that catalyze phosphorylation of proteins on diverse amino acids including arginine, cysteine, histidine, aspartate, serine, threonine, and tyrosine. These protein kinases regulate different physiological processes in response to environmental modifications. For example, in response to nutritional stresses, the Gram-positive bacterium Bacillus subtilis can differen...
متن کاملCharacterization of sporulation histidine kinases of Bacillus anthracis.
The initiation of sporulation in Bacillus species is regulated by the phosphorelay signal transduction pathway, which is activated by several histidine sensor kinases in response to cellular and metabolic signals. Comparison of the protein components of the phosphorelay between Bacillus subtilis and Bacillus anthracis revealed high homology in the phosphorelay orthologs of Spo0F, Spo0B, and Spo...
متن کاملThe structure of the KinA-Sda complex suggests an allosteric mechanism of histidine kinase inhibition.
The Bacillus subtilis histidine kinase KinA controls activation of the transcription factor governing sporulation, Spo0A. The decision to sporulate involves KinA phosphorylating itself on a conserved histidine residue, after which the phosphate moiety is relayed via two other proteins to Spo0A. The DNA-damage checkpoint inhibitor Sda halts this pathway by binding KinA and blocking the autokinas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cell
دوره 13 5 شماره
صفحات -
تاریخ انتشار 2004